On Mittag-Leffler distributions and related stochastic processes
نویسنده
چکیده
Random variables with Mittag-Leffler distribution can take values either in the set of non-negative integers or in the positive real line. There can be of two different types, one (type-1) heavy-tailed with index α ∈ (0, 1), the other (type-2) possessing all its moments. We investigate various stochastic processes where they play a key role, among which: the discrete space/time Neveu branching process, the discrete-space continuous-time Neveu branching process, the continuous space/time Neveu branching process (CSBP) and renewal processes with rare events. Its relation to (discrete or continuous) self-decomposability and branching processes with immigration is emphasized. Special attention will be paid to the Neveu CSBP for its connection with the Bolthausen-Sznitman coalescent. In this context, and following a recent work of Möhle [49], a type-2 Mittag-Leffler process turns out to be the Siegmund dual to Neveu’s CSBP block-counting process arising in sampling from PD ( e−t, 0 ) . Further combinatorial developments of this model are investigated.
منابع مشابه
An Overview of Generalized Gamma Mittag-Leffler Model and Its Applications
Recently, probability models with thicker or thinner tails have gained more importance among statisticians and physicists because of their vast applications in random walks, Lévi flights, financial modeling, etc. In this connection, we introduce here a new family of generalized probability distributions associated with the Mittag–Leffler function. This family gives an extension to the generaliz...
متن کاملRenewal processes of Mittag - Leffler and Wright type
After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each oth...
متن کاملRenewal processes of Mittag - Leffler and Wright type
After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each oth...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملMonte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.
We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Lévy alpha -stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 296 شماره
صفحات -
تاریخ انتشار 2016